

ey e e i e i e ol

@ Nathan Muck

ﬁ TE]IT'ITT'I‘y’ }{lmng
@tomn &l I

Simon Meyer
@simonsaysdesign

Carson Johnson

CJ

Programmer

Artist

Artist
Programmer

Programmer

T (ER SR [CEUNCY N N S

Elevator Pitch

Introduction
Inspirations

Concept Art and Ideas
Sprites

Unused Sprites

Code

16

19

21

Elevator Pitch:

Keji is a puzzle platformer where players resize the browser window
to affect the level’s size and shape. They play as a baby chicken that
pushes an ice block around to warm up by a heater. Once the ice
block melts, the key inside is used to advance to the next level.
Players need to figure out how to navigate the level while being faced
with various obstacles.

Introduction:

The word keji means “cage” in Japanese. It is also the name of our
player character. Keji, is “caged” in a broiler farm where he will suffer
a very cruel fate. The day he is born he will be misstreated by farm
workers and treated like a disposable object rather than a living be-
ing. If he survives the assembly line process, where dozens don't, he
will spend the rest of his life with other chickens in a dark room that
is cramp and never cleaned. He will be over fed to the point where
his own weight will crush himself from the inside. It isn't just the
overfeeding that he has to worry about, but also the other chickens
in the farm that are either sick, or unaware, that will try to peck him
to death. Once he reaches 40 days old he will have lived his life only
knowing fear and be sent to the slaughter house where he will meet

his end.

Inspirations:

We have been inspired by many sources, but our main ones are The
Legend of Zelda, Minit, Inside, Little Nightmares, Tamagotchi, and
Limbo. We wanted to have simple and readable sprites that convey a
friendly mannter to the player. That being said, we also wanted it to be
creepy in a suble way. We tried doing this with music and ambigous
sprites such as floating hands, zombie-like chicks, and spikes.

A lot of the art was heavily influenced by Minit and Tamagotchi. The
simplistic nature of them is what we wanted to capture.

In the end, gameplay and puzzles used were influenced by Zelda, and
Little Nightmares. Moving crates and blocks from one area to another
is the goal and the player must do this by resizing the browser
window to solve the puzzles. Zelda in the early games had a lot of
block moving in their puzzles. We made it so Keji wouldn't be able to
harm the enemies directly. It must be done by pushing the enemies
into spikes with crates that spawn in the level or with the ice block it-
self. This is similar to how in games like Little Nightmares the players
are left vulnerable to enemies.

i

o] (B, ol 22 23S ITSY

-
A
-

1" g

- yﬁj
<P
G

Concept Art and Ideas:

10

]

m -
+ @
- =i

e -

11

7 |Cat

R
|

e __, PN |

e s

St (esia bowsel ol pv

-

0

AV

PJL} el

[t

12

| | | | | | | | | | *l . | | | | | | | |

Sprites:

IV X

NARA

i
-

En_:

—-——
i
-

Unused Sprites:

-
- i
-

19

S

ROV M AT

1 outsideOfBounds(object) {

var objWidth - object.width;
var objHeight object.height;

(objWidth < TILE_SIZE objHeight « TILE_SIZE) {
objWidth - objWidth * GAME_SCALE;
objHeight objHeight GAME_SCALE;

(object.x leftWall.x + TILE_SIZE GAME_SCALE object.x rightWall.x objWidth object.y ceiling.y TILE_SIZE GAME_SCALE object.y floor.y - objHeight) {
(object.body.enable {

object.body.setEnable(f

object.setTint(39);

(object.anims object.anims.isPlaying) {
object.anims.pause();

(object.body.enable
object. setEnable(tr
object. v 1

(object.anims nul object.anims.isPlaying) {
object.anims. resume();

function createlceCube{gameScene, X, Y) {
var iceCube - gameScene.physics.add.sprite(roundTile(X), roundTile(Y), 'iceCube').setSize(15,15).setOrigin(@).setScale(GAME_SCALE);
physicsObjects.add(iceCube);
pushable.add(iceCube);
ice.add(iceCube);

iceCube.body.drag.x 75;

gameScene.physics.add.collider(iceCube, heaters,
function(iceCube, heater){
iceCube.body.setEnable(fa =
iceCube.play('iceCube melt');
var sfx gameScene. sound . add("iceMelt", true);
sfx.play();

iceCube.on{"animationcomplete™, ()=>{
createKey(gameScene, iceCube.x, iceCube.y);
(key) {
key.body.setVelocityY(-1
key.body.setAllowGravity (
i
iceCube.destroy();

F¥s

}, null, gameScene);

gameScene.physics.add.overlap(iceCube, player, function (iceCube, player) {
player._body.stop();
(iceCube.y > player.y) {
player.y - iceCube.y (player.height * GAME_SCALE);
player.body.touching. down true;
¥
1);

gameScene.physics.add.collider(iceCube, crates, hitSound);
gameScene.physics.add.collider(iceCube, immovableObjects, hitSound);

function 1lvl3(gameScene) {

setWorldBounds (gameScene, &, true);

(!levellnitialized) {
console.log("Level 3");

createPlayer(gameScene, TILE SIZE * 4, TILE SIZE * 3);
createHeater(gameScene, false, TILE SIZE 3, TILE'SIZE * &, 188);
createPlatform(gameScene, false, TILE SIZE 3, TILE SIZE 7, TILE_ SIZE 5, TILE STZE*4);

createlceCube(gameScene, rightWall.x - TILE 5IZE * 2, TILE SIZE * 3);
createGoal (gameScene, rightWall.x - TILE SIZE, TILE SIZE*6};

createCrate(gameScene, TILE_SIZE 6, TILE SIZE %, “FILE STZE, THE ST7F%3);
createCrate(gameScene, rightWall.x TILE SIZE 4, TILE SIFE 3, TIFE:SIZE, TILE STIE*3);

levellnitialized true;

i

createPlatform(gameScene, true, rightWall.x TILE SIZE 5, TILE_SIZE 7, TILE SIZE 5, TILE_SIZE 1);
createTrap(gameScene, true, TILE SIZE * 8, floor.y - TILE SIZE, TILE_SIZE*3);

createlaser(gameScene, true, TILE_SIZE*7, TILE SIZE*18, TILE SIZE, TILE SIZE, @, floor.width - TILE SIZE 123;
createDetail (gameScene, true, TILE SIZE * 6, fleoor.y, 2, true);

var playerDead

function gameQOver(gam:

playerDead true;
player.play("player death’);
var sfx - gameScene.sound.add(death’, tru
stx.play();
music.setVolume(8.1);
gameScene.physics.pause();
setTimeout(() => {
music.setVolume(8.5);
gameScene.physics.resume();

level - -;
nextlLevel (gameScene);
playerDead

1, 1568);

(upKey .isDown wKey . isDown spaceKey.isDown playerDead) {

(canlump) {
player.anims.play('player jump",
var sfx tf sound.add(" jump ',
sfx.play();

whenPressed - upKey.timeDown;
canJump F 3

(whenPressed upKey.timeDown) {
g Phe) 71
(currentJumpVelocity < maxJumpVelocity) {

(currentJumpVelocity < maxJumpVelocity
currentJumpVelocity:=1

{currentJumpVelocity < maxJumpVelocity
currentJumpVelocity:=58;

I
L
currentJumpVelocity:=18;
X
i
player._body.setVelocity¥(currentJumpVelocity);

(player.body.touching.down) {
currentJumpVelocity a;
canJump true;

I
&
canJump ;
(playerDead) {
player.anims.play("player jump', true);

23

function nextlLevel{gameScene) {
console.log("Next level!™);
level ++;

dynamicPlatforms.clear(true, t
staticPlatforms.clear(true, true);
bullets.clear(true, :
enemies.clear(trus,
staticTraps.clear(true
dynamicTraps.clear({true
movingPlatforms.clear(true, tru
physicsObjects.clear(trues, trus
immovableObjects.clear(true, f
pushable.clear({true, true
heaters.clear(true rue
lasers.clear(tr
bridges.clear(true, true

(player) player.destroy();

(goal) goal.destroy();

(key) key.destroy();

levellnitialized

levels[level](gameScene);

var being resized
var gameScene - this;
window.addEventListener(' resize’, function() {

gameScene.physics.pause();
gameScene.anims.pauseAll();

('being resized) {
setTimeout{() => {

levels[level](gameScene);
being resized

s 35);

(! gamePaused) {
setTimeout({) => {

gameScene.physics.resume();
gameScene.anims. resumeAl1();
(movingPlatforms.getLength()
gamePaused talse;
1, 1608);
b

gamePaused

}

being resized

ks

platformTween

.paused) platformTween.resume();

